Dicer1 and miR-219 Are Required for Normal Oligodendrocyte Differentiation and Myelination

نویسندگان

  • Jason C. Dugas
  • Trinna L. Cuellar
  • Anja Scholze
  • Brandon Ason
  • Adiljan Ibrahim
  • Ben Emery
  • Jennifer L. Zamanian
  • Lynette C. Foo
  • Michael T. McManus
  • Ben A. Barres
چکیده

To investigate the role of microRNAs in regulating oligodendrocyte (OL) differentiation and myelination, we utilized transgenic mice in which microRNA processing was disrupted in OL precursor cells (OPCs) and OLs by targeted deletion of Dicer1. We found that inhibition of OPC-OL miRNA processing disrupts normal CNS myelination and that OPCs lacking mature miRNAs fail to differentiate normally in vitro. We identified three miRNAs (miR-219, miR-138, and miR-338) that are induced 10-100x during OL differentiation; the most strongly induced of these, miR-219, is necessary and sufficient to promote OL differentiation, and partially rescues OL differentiation defects caused by total miRNA loss. miR-219 directly represses the expression of PDGFRalpha, Sox6, FoxJ3, and ZFP238 proteins, all of which normally help to promote OPC proliferation. Together, these findings show that miR-219 plays a critical role in coupling differentiation to proliferation arrest in the OL lineage, enabling the rapid transition from proliferating OPCs to myelinating OLs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-Mediated Control of Oligodendrocyte Differentiation

MicroRNAs (miRNAs) regulate various biological processes, but evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. To determine the role of miRNAs in the formation of myelinating oligodendrocytes, we selectively deleted a miRNA-processing enzyme, Dicer1, in oligodendrocyte lineage cells. Mice lacking Dicer1 display severe myelinating defic...

متن کامل

Regulation of miRNA 219 and miRNA Clusters 338 and 17-92 in Oligodendrocytes

MicroRNAs (miRs) regulate diverse molecular and cellular processes including oligodendrocyte (OL) precursor cell (OPC) proliferation and differentiation in rodents. However, the role of miRs in human OPCs is poorly understood. To identify miRs that may regulate these processes in humans, we isolated OL lineage cells from human white matter and analyzed their miR profile. Using endpoint RT-PCR a...

متن کامل

Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination.

Although commonly considered a disease of white matter, gray matter demyelination is increasingly recognized as an important component of multiple sclerosis (MS) pathogenesis, particularly in the secondary progressive disease phase. Extent of damage to gray matter is strongly correlated to decline in memory and cognitive dysfunction in MS patients. Aging likewise occurs with cognitive decline f...

متن کامل

Transplanted miR-219-overexpressing oligodendrocyte precursor cells promoted remyelination and improved functional recovery in a chronic demyelinated model

Oligodendrocyte precursor cells (OPCs) have the ability to repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. Recent evidence suggests that miR-219 helps regulate the differentiation of OPCs into oligodendrocytes. We performed oligodendrocyte differentiation studies using miR-219-overexpressing mouse embryonic stem cells (miR219-mESCs). The self-renewal and multiple...

متن کامل

Microarray Screening for Genes Involved in Oligodendrocyte Differentiation in the Zebrafish CNS

Within the vertebrate nervous system, myelination is required for the normal function of neurons by facilitating the rapid conduction of action potentials along axons. Oligodendrocytes are glial cells which myelinate axons in the central nervous system. Disruption of myelination and remyelination failure can cause human diseases such as multiple sclerosis. Despite the importance of myelination,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2010